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Abstract Electrospun fibers with nano-/micro-scale porous structures were suc-

cessfully fabricated from polymer solutions that contained suspended micro-/nano-

size salt particles of sodium chloride or calcium carbonate, which were subsequently

removed through a leaching process after electrospinning. It was found that the size

and dispersion of the salt particles had significant effects on the pore size and pore

distribution in the resulting electrospun fibers. Using sodium chloride salt particles in

the electrospinning process should not induce any residual toxicity in the resulting

porous fibers. Therefore, this approach provides a very simple and versatile method

in the fabrication of electrospun fibers that have secondary nano-/micro-scale porous

structures, which are desirable in many important biomedical applications including

tissue engineering and controllable drug release.
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Introduction

Since it was first introduced in 1930 with an electrospray [1, 2], electrospinning has

become a simple, versatile, and useful technique for fabricating nanofibers from a

rich variety of functional materials. In a typical procedure, a high voltage is applied

to a metallic spinneret, which is connected to a reservoir holding a polymer solution

with proper viscosity, conductivity, and surface tension. Recently, significant

progress has been made in producing nanofibers with special secondary structures,

core/shell nanofibers [3, 4], hollow nanofibers [5], as well as porous nanofibers [6].

By virtue of a high surface area to mass ratio, nonwoven electrospun fiber mats

have offered potentially advantageous performance in the fields encompassing

tissue engineering to membrane science [6]. The surface area of a solid nanofiber

can be further significantly increased by introducing a porous structure. Increase in

surface area is beneficial and important to many applications, which include

catalysis, filtration, absorption, fuel cells, solar cells, batteries, drug delivery and

tissue engineering [7]. For instance, porous surfaces can provide more binding or

adsorption sites for drug loading. In addition, introduction of porous structures

modifies the fiber surface properties such as morphology and wettability, which can

also influence cellular adhesion and interactions with the scaffold materials in tissue

engineering applications.

The surface morphology of electrospun polymer fibers is governed by several

electrospinning parameters, which include the applied electrical voltage, solution

ejection rate, phase diagram, and polymer solution properties such as viscoelas-

ticity, spinnability, temperature, and competition between the rates of phase

separation and solvent evaporation [8, 9]. At present, use of phase separation of

different polymers during electrospinning with proper spinning parameters has been

one of the most important approaches for preparing porous electrospun fibers [10–

12]. Dayal’s study [6] demonstrated that the competition between phase separation

rate and evaporation rate of solvents played a key role in producing porous

structures in the resulting fibers. Such a phase separation method for producing

porous structures requires a complicated organic solvent system (usually more than

two solvents) to adjust the rates of phase separation and solvent evaporation. Use of

multiple solvents increases additional potential risk of destroying drug activity. It

should also be noted that not all materials can be dissolved into an appropriate

solvent to form a solution for electrospinning. It is very difficult to properly adjust

the rates of phase separation and solvent evaporation in order to produce electrospun

fibers with desired porous structures. The aforementioned limitations of such a

method have resulted in a very limited selection of polymers and drugs in potential

applications.

In this communication, we report one simple and versatile technique that was

developed for producing porous fibers based on the selective removal of a

component from electrospun nanofibers made of a composite or blend materials. In

this method, polymer solutions that contained nano-scale size salt particles were

directly electrospun into polymer fibers; electrospun fibers with nano-/micro-scale

porous structures were then obtained via leaching the salt particles out of the

resulting fibers.
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Experimental

The experiment involved the use of Poly (e-caprolactone) (PCL), an aliphatic

polyester that has frequently been used for biomedical and tissue engineering

applications. PCL was dissolved and the salt particles were dispersed in a solvent

mixture of chloroform and methanol by both mechanical agitation and ultrason-

ication to obtain a PCL solution with a stable suspension of the salt particles. The

solution was then placed in a syringe and supplied using a syringe pump.

Electroconductive templates were employed as the collectors for the electrospinning

process. The resulting PCL/salt particle composite fibers were subsequently

immersed in an appropriate solvent to leach the salt out.

Materials

PCL, which has an average molecular weight (MW) of 80 kDa, was purchased from

Aldrich (USA). Sodium chloride salt particles (B1 lm), chloroform and methanol of

analytical grade were purchased from Fisher scientific (USA). Calcium carbonate nano-

particles with particle-size B100 nm were purchased from American Element (USA).

Electrospinning

PCL was dissolved in a mixture of chloroform and methanol (3:1 by volume) to

prepare a 9 wt% solution. Sodium chloride microparticles or calcium carbonate nano-

particles were added to the PCL solution and stirred for 2 h, and then ultrasonically

treated for 2 min to achieve uniform dispersion and stable suspension. The spray rate

of the PCL solution from the syringe was controlled at 0.025 mL min-1 by using a

syringe pump. The voltage applied to the needle of the syringe was 20 kV and the

distance between the needle tip and the collector was 9 cm.

Salt leaching

The leaching of sodium chloride particles from electrospun PCL fibers was

performed using DI water, and the leaching of calcium carbonate nano-particles was

done with 2 M hydrochloric acid (HCl) aqueous solution.

Fiber surface examination

The resulting electrospun fibres were first coated with platinum in a sputtering coater. The

fiber surfaces were examined with scanning electron microscopy (SEM) (Hitachi S4700

Field Emission Scanning Electron Microscope) at an accelerating voltage of 5 kV.

Results and discussion

Two representative SEM images of these electrospun PCL fibers are shown in

Fig. 1. It can be seen that two types of porous structures were obtained on the
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resulting electrospun fibers after salt leaching. One is a groove shape, shown in

Fig. 1a, in which a majority of the grooves stretched to several micrometers.

Another includes pore shapes with sizes ranging from several hundred nanometers

to several micrometers as shown in Fig. 1b. From Fig. 1, it was also noted that the

diameter of electrospun fibers has a very broad distribution from nano- to micro-

scale, and only the larger diameter fibers possess secondary porous structures. The

reason for this is that the salt microparticles are difficult to cover or attach onto the

surface of small diameter fibers due to the larger size of salt particles (B1 lm)

during the electrospinning process.

In order to obtain the secondary porous structures on small diameter fibers, nano-

particles of calcium carbonate (B100 nm) were suspended in PCL solution with the

aid of ultrasonication to achieve a stable particle suspension. The typical images of

the electrospun fibers thus prepared are shown in Fig. 2b, c, and d. Figure 2a shows

the control of PCL nanofibers with smooth surfaces electrospun from PCL solution

without nanoparticle addition. From Fig. 2b, it can be clearly seen that the

secondary pores and grooves were obtained on PCL nanofibers with addition of

calcium carbonate nano-particles into the PCL solution. The SEM images of PCL/

calcium carbonate nano-particle composite fibers taken before (Fig. 2c) and after

(Fig. 2d) salt leaching demonstrated that small diameter fibers were obtained by

adding nanoparticles into PCL solutions. It was also noticed that the nanoparticles

Fig. 1 The SEM image of two
typical porous structures
existing on the resulting
electrospun PCL fibers after
leaching out the salt particles
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aggregated to some extent during mixing and could not be completely dispersed in

solution, which resulted in the larger pores and non-uniformity of the porous

structure on nanofiber surfaces as shown Fig. 2d. In other words, both salt particle-

size and dispersion uniformity had significant effects on the pore sizes and

distributions of the electrospun fibers. These results indicate that uniform dispersion

and stable suspension of nanoparticles in a polymer solution are necessary in order

to fabricate electrospun fibers with uniform porous structures. In this study, although

ultrasonication was used for nanoparticle dispersion, the suspension stability of salt

nanoparticles in polymer solutions needs to be improved in order to produce

electrospun fibers with uniform pores and pore size distribution. Use of a hybrid

twin screw extrusion/electrospinning technique, as demonstrated by Erisken et al’s

studies [13, 14], could be one remedy to the problem of controlling the dispersion

stability of particles and nanoparticles in polymer solutions during the electrospin-

ning process.

The SEM images of the as spun nanofibers show in Fig. 3a indicate that the

calcium carbonate nano-particles were not embedded inside electrospun PCL fibers,

and most of the nanoparticles were just attached onto the fibers’ surfaces. During

the leaching process, the particles were easily dissolved and removed by HCl, and

nano-porous structures were left on the fibers’ surfaces as shown in Fig. 3b.

Figure 3c shows the weight loss curve of the calcium carbonate nanoparticles as a

function of leaching time. It can be seen that the calcium carbonate nano-particles

can be almost completely removed (94.25%) after leaching for 2 h in a 2 M HCl

aqueous solution.

Fig. 2 SEM images of: a the smooth surface of non-porous structures on PCL fibers electrospun from a
PCL solution without salt particle addition; b the surface morphology of porous electrospun PCL fibers, c
the electrospun fibers before salt leaching, d the electrospun fibers after salt leaching
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Conclusions

Electrospun fibers with nano-/micro-scale porous structures were successfully

fabricated from polymer solutions that contained micro-/nano-sized salt particles via

electrospinning and a subsequent salt leaching process. It was found that both the

size and dispersion of salt particles in a polymer solution had significant effects on

the size and distribution of the porous structures on the electrospun fibers. When

sodium chloride salt particles were used, it should not introduce any residual

toxicity on the porous fibers. Therefore, this approach provides a very simple and

versatile method in fabrication of electrospun fibers that have secondary nano-/

micro-scale porous structures, which are highly desired for many important

biomedical applications such as tissue engineering and controllable drug release.
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